The Role of PGC1α in Cancer Metabolism and its Therapeutic Implications.

نویسندگان

  • Zheqiong Tan
  • Xiangjian Luo
  • Lanbo Xiao
  • Min Tang
  • Ann M Bode
  • Zigang Dong
  • Ya Cao
چکیده

PGC1α is a transcription factor coactivator that influences a majority of cellular metabolic pathways. Abnormal expression of PGC1α is associated with several chronic diseases and, in recent years, it has been shown to be a critical controller of cancer development. PGC1α acts as a stress sensor in cancer cells and can be activated by nutrient deprivation, oxidative damage, and chemotherapy. It influences mitochondria respiration, reactive oxygen species defense system, and fatty acid metabolism by interacting with specific transcription factors. The characteristic traits of PGC1α in maintaining metabolic homeostasis promote cancer cell survival and tumor metastasis in harsh microenvironments. Not only does PGC1α act as a coactivator, but is also itself controlled by oncogenes and transcription factors. PGC1α and these molecules can form signaling axes that include PML/PGC1α/PPARα, MITF/PGC1α, and PGC1α/ERRα, which are important in regulating metabolic adaptation in specific cancer types. Some of these PGC1α-associated pathways are inherently activated in cancer cells, and others are induced by stress, which enable cancer cells to acquire resistance against therapy. Notably, certain therapeutic-resistant cancer cells are addicted to PGC1α-dependent metabolic activities. Suppression of PGC1α expression resensitizes these cells to therapeutic treatments, which implicates PGC1α as a promising target in cancer molecular classification and therapy. Mol Cancer Ther; 15(5); 774-82. ©2016 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NEP, ACE and Homologues: The Pathophysiology of Membrane Metalloproteases

The zinc metalloprotease, neprilysin (NEP), plays a role in the metabolism of cardiovascular, inflammatory and neuropeptides, including mitogenic peptides such as bombesin. In the cardiovascular system, NEP has a primary role in the inactivation of natriuretic peptides but also contributes to local metabolism of angiotensin, endothelins and bradykinin. Hence NEP is seen as a potential therapeut...

متن کامل

PGC1α promotes tumor growth by inducing gene expression programs supporting lipogenesis.

Despite the role of aerobic glycolysis in cancer, recent studies highlight the importance of the mitochondria and biosynthetic pathways as well. PPARγ coactivator 1α (PGC1α) is a key transcriptional regulator of several metabolic pathways including oxidative metabolism and lipogenesis. Initial studies suggested that PGC1α expression is reduced in tumors compared with adjacent normal tissue. Par...

متن کامل

PGC1α: Friend or Foe in Cancer?

The PGC1 family (Peroxisome proliferator-activated receptor γ (PPARγ) coactivators) of transcriptional coactivators are considered master regulators of mitochondrial biogenesis and function. The PGC1α isoform is expressed especially in metabolically active tissues, such as the liver, kidneys and brain, and responds to energy-demanding situations. Given the altered and highly adaptable metabolis...

متن کامل

سلول های بنیادی سرطانی: ناهمگونی در سلول‌های سرطانی و راهکارهای نانوتکنولوژی در درمان آن‌ها

Cancer stem cells are believed to be responsible for the cancer-initiating step and resistance to chemotherapy drugs. Studies have shown that cancer stem cells are silent and have no metabolic activity. The main reasons behind tumors resistant to therapies are lack of activity of cancer stem cells and division of cancer cells. This cell population, like normal stem cells, is capable of self-ren...

متن کامل

The Role of microRNA in Cancer Cachexia and Muscle Wasting: A Review Article

Almost half of cancer patients experience cachexia syndrome. Cachexic patients are at risk of increased side effects of chemotherapy, reduced tolerance to chemotherapy drugs, longer duration of treatment period, and decreased quality of life. Cancer cachexia is a multifactorial syndrome. Micro ribonucleic acid (miRNA), a “non-coding RNA”, is considered to be a risk factor of cachexia and muscle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 2016